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POLYDISPERSITY EFFECTS ON THE DEMlXlNG BEHAVIOR 
OF PQLY (VINYL METHYL ETHERIIPOLYSTYRENE BLENDS 

MARGIT T. RATZSCH, HORST KEHLEN, and CHRISTIAN WOHLFARTH 

Chemistry Department 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg, German Democratic Republic 

ABSTRACT 

Phase equilibrium calculations for solutions or mixtures of synthetic 
polymers become considerably more difficult when there is polydis- 
persity of the polymers. To simplify the calculations, polydispersity 
is often neglected in the calculations or accounted for in a summary 
way only, and often only relatively simple free energy relations are 
applied. For example, Halary et al. published experimental demixing 
data on poly(viny1 methyl ether)/polystyrene blends. In evaluating 
the data the following assumptions were made: 1) the minimum of 
the demixing curve equals the critical point, 2 )  the X-parameter is in- 
dependent of concentration and molecular weight, 3) the polydisper- 
sity may be roughly taken into account by using the formulas for mono- 
disperse polymers and using the weight-average molecular weight. Con- 
tinuous thermodynamics proves to be a suitable method to overcome 
the difficulties caused by polydispersity. Therefore, this method per- 
mits one to obtain detailed information on the phase equilibria in poly- 
mer sohtions and in polymer blends in a relatively easy way. To show 
this, the data of Halary et al. are reanalyzed by means of continuous 
thermodynamics. In this way, more profound knowledge may be ob- 
tained from the experimental material, e.g., a more precise determina- 
tion of the critical point and a more correct location of the spinodal. 
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1056 RATZSCH, KEHLEN, AND WOHLFARTH 

INTRODUCTION 

The poly(viny1 methyl ether)/polystyrene blend (PVME + PS) can be con- 
sidered today as a standard system for the investigation of polymer compati- 
bility in the melt [l-1.51, comparable to solutions of polystyrene in cyclo- 
hexane for the case of liquid-liquid equilibrium in polymer solutions. On the 
one hand, this is due to the good availability of well-characterized polystyrene 
samples of any desired molecular weight (MW). On the other hand, the tech- 
nique of static quenching of fluorescence emission offers a very convenient 
way for the precise investigation of the demixing region in these blends by use 
of anthracene-labeled polystyrenes. The appearance of phase separation is 
characterized by sharp cessation of fluorescence quenching, and equilibrium, 
as well as kinetic, effects may be studied [l-4, 13-15]. 

In 1986, Halary et al. published a systematic series of demixing curves and 
spinodals for this blend [ 1,2]  , covering a very broad range of mean MW and 
establishing a well-documented effect of mean MW. In their thermodynamic 
analysis of the primary data, they neglected the effect of polydispersity and 
considered the minimum of the demixing curve to be the critical point. This 
cannot be correct because poly(viny1 methyl ether) samples are characterized 
by rather broad MW distributions (MWD). The minimum of the demixing 
curve and the critical point in polydisperse systems do not coincide. The 
spinodal and the demixing curve possess a common tangent at the critical 
point, which has a nonzero slope. The minima of both curves differ in con- 
centration and temperature. Within their discussion of the effect of mean 
molar mass, Halary et al. found a correlation between the minimum of the 
demixing curve and the weight-average MW in the form $ p f l  = 1 t 

[ 2 ] .  This fact is usually interpreted as a polydispersity effect, but 
it is not a sufficient proof of the assumption that this minimum is equal to 
the critical point. Since the work of Koningsveld on polydisperse polymer 
solutions [ 161 , it is well-known that the threshold temperature (i.e., the ex- 
tremum) behaves in a manner analogous to the critical point if type and prin- 
cipal shape of the MWD do not change within a series as will be the case here. 

Continuous thermodynamics permits a complete and correct treatment of 
polydispersity effects on polymer compatibility [ 17-1 91 . The aim of this 
paper is to reanalyze the data of Halary et  al. [ l ,  21 to account for the true 
effect of MWD by continuous thermodynamics. In this way, consistent in- 
formation on the demixing curve (cloud-point curve) and the related shadow 
curve, the critical point, and the spinodal will be provided, thereby giving 
deeper insight into the compatibility behavior of the blend. 
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POLY(VINYL METHYL ETHER)/POLYSTYRENE BLENDS 1057 

BASIC EQUATIONS 

Polystyrene and poly(viny1 methyl ether) samples can be characterized by 
the Schulz-Flory distribution function, reading for a Polymer B: 

where r is the number of segments for the considered polymer species and 
rn,B is the corresponding number average. r means the gamma-function. 
The parameter kB is related to mass (weight) and the number average of 

- 

by 

The demixing curves given by Halary et al. [ 1, 21 describe the tempera- 
ture at the beginning of the phase separation process as a function of the 
composition $B' of the phase ' with given Polymers B (PVME) and C (PS) 
characterized by their distribution functions WB(r)  and W c ( r ) .  For multi- 
component systems, such a curve is usually called a cloud-point curve. The 
related shadow curve then provides the composition $B" of the first drop- 
lets of the newly formed phase ". Both curves are identical for strictly 
binary mixtures but not for the polydisperse blend considered here. For 
such systems, continuous thermodynamics [ 17, 181 leads to a set of only 
three equations that provide all necessary information on the cloud point/ 
shadow point problem: 

Segments of both Polymers B and C are chosen to be of equal size, and 
I, is the number-average segment number for the total phase considered. 
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1058 RATZSCH, KEHLEN, AND WOHLFARTH 

Integration obeys the normalization condition for the distribution function: 

lW(r) dr = 1. 

All integrals are to be taken over the total r-intervals occurring. $B is the 
overall segment fraction of the Polymer B in a phase where 

The quantities of p~ and pc are defined by 

= E  To calculate the segment molar activity coefficients T K ,  a C -model pro- 
posed by Tompa [20] is assumed to be sufficient for the title blend [18] : 

Z E  is the deviation of Gibbs free energy from its value for a Flory-Huggins 
mixture (with x = 0) considered for a mole of segments [21], R is the gas con- 
stant, and T is the absolute temperature. The function f l  (7) represents the 

temperature dependence of G /RT (in analogy to the simple X-function). An 
analytical expression for f l  (7') does not need to be specified here. 7~ is ob- 
tained from Eq. (8),  reading [17] 

=E 

EE and T K  contain two adjustable parameters, c and d (Halary et al. 123 
assumed c = d = 0). Some experimental cloud points or the critical point are 
usually chosen for fitting these parameters. 

ANALYTIC INTEGRABI LlTY 

For the case of the Schulz-Flory distribution functions, all integrations in 
Eqs. (2)-(4) can be performed analytically, leading to 
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POLY(VINYL METHYL ETHER)/POLYSTYRENE BLENDS 1059 

(1 1) 

and 

and corresponding equations for $cff  and Fn,Crf obtained from Eqs. (1 1) and 
(12) by substituting CforB. After rearrangement of Eqs. (1 1) and (12) we 
get 

Using Eqs. (7), (9), and (1 0), we find 

y =  (1 - c)($g’2 - + 2(c- d)($g’3 - +gff3) + 3d($gJ4 - + g f f 4 ) .  

(17) 

Equations (4) and (1 1)-(17) permit the elimination of all other variables, 
resulting in a single equation for the unknown $g”: 

which can be solved numerically by Newton’s method. In Eq. ( l X ) ,  pg and 
pc are given by Eq. (13). Hence, continuous thermodynamics provides an 
enormous reduction in the computational burden of calculating cloud-point 
curves and shadow curves, especially in the case of Schulz-Flory distributions. 

SPINODAL CURVE AND CRITICAL POINT 

The equations for spinodal curve and critical point are derived from the 
stability conditions [22, 231. 
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1060 RATZSCH, KEHLEN, AND WOHLFARTH 

Spinodal curve: 

Critical point: 

Tz'c +6/3 ( T ) [ d -  C- 4 d $ ~ ]  =o, (20) 
rz, B 

t - ____ 
$2 F w , ~ '  $c2 r w , c 2  

where the critical point also has to fulfill Eq. (19), and Fz means the z-average 
of r. 

EXTREMUM OF THE CLOUD-POINT CURVE 

Halary et al. [ 1, 21 represented all demixing curves in figures and only the 
minima in a table. Hence, the minimum is used for calculation of the param- 
eters. If, according to earlier results [18] , the simplification d = 0 is applied, 
this point is sufficient for calculation of the remaining parameter c. 

The extremum condition of the cloud-point curve reads 

(2,) =o. 
a$B P 

Considering the function P ( T )  to be monotonous, Eq. (2 1) is equivalent to 

and we do not need to differentiate the cloud-point equation implicitly with 
respect to T and $B' but can use Eq. (14): 

This differentiation is straightforward. It needs only to be noted that d$B' = 
-d$c' and that the partial derivative ( a $ ~ " / a $ ~ ' ) p  may be calculated by im- 
plicit differentiation: 
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POLY(VINYL METHYL ETHER)/POLYETHYLENE BLENDS 1061 

(23) 

where F is given by Eq. (18). 

and the concentration $B" corresponding to the minimum of the shadow 
curve by using Powell's procedure. 

Thus, by applying d = 0, we are able to calculate the complete cloud-point 
curve and the shadow curve together with the critical point and the spinodal 
curve on the basis of only the extremum value of the experimental demixing 
curve (i.e., the cloud-point curve). 

As outlined below, it is desirable to also perform calculations main- 
taining the two parameters c and d. Then a further point of the cloud-point 
curve is used additionally for calculation of the parameters. 

The system of Eqs. (18) and (23) is solved with respect to the parameter c 

RESULTS AND DISCUSSION 

The Schulz-Flory parameters for the polymer samples (nomenclature fol- 
lows Refs. 1 and 2) and the result of the parameter estimation according to 
the procedure outlined above are summarized in Table 1. The index B in all 
equations given above corresponds to poly(viny1 methyl ether) and C to poly- 
styrene. It is obvious that the assumption of Halary et al. [2] -x being a 
constant parameter, i.e., c = d = 0-is a very crude one. Furthermore, a much 

larger variation of G with the mean MW is observed than expected from our 
earlier results [ 181 . This indicates a more complex behavior of the Gibbs 
free energy function and of the binodal plane than that obtained by using 
only one parameter. Nevertheless, the main features can be discussed on 
this basis. 

Table 2 lists the minima of the cloud-point curves measured by Halary et 
al. [ 1,2], the calculated minima of the shadow curves, and the calculated 
critical points for all blends. To show the differences clearly, the calculated 
results are given for three figures in all cases. The distances between both 
minima and between them and the critical solution point are appreciable 
and cannot be neglected, as Halary et al. assumed. Figure 1 presents the 
complete calculated curves for two examples (a blend with low mean MWs 
and a blend with high ones), where 1//3(7') is used as a measure of temperature. 

The figure shows clearly that the location of the spinodal curve is also un- 
precise in the papers of Halary et al. [ 1,2]  . The minima of the cloud-point 

=E . 
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TABLE 2. Weight Fractions of Polystyrene at the Minima of the Cloud-Point 
Curve and of the Shadow Curve, and at the Critical Point 

~~ ~~~ ~~~~~ ~~ 

Minimum of Minimum of 
Blenda cloud-point curve shadow curve Critical point 

V99-S20 

v99-s35 

V99-S67 

V99-SlO6 

V994233 

V99-S381 

V994600 

v99-s7 5 9 

V99-S1660 

V45-Sl06 

V388-S106 

V638-Sl06 

0.55 

0.50 

0.29 

0.235 

0.175 

0.125 

0.12 

0.1 1 

0.08 

0.20 

0.67 

0.72 

0.439 

0.383 

0.336 

0.293 

0.252 

0.225 

0.195 

0.182 

0.146 

0.269 

0.49 1 

0.544 

V1330-S106 0.80 0.587 

V388-S233 0.40 0.328 

V388-S600 0.30 0.286 

aSee Table 1, Footnote b. 

0.5 15 

0.460 

0.333 

0.289 

0.240 

0.205 

0.182 

0.170 

0.136 

0.248 

0.573 

0.625 

0.680 

0.368 

0.296 

curve and the spinodal do not coincide, but both curves are tangent to each 
other at the critical point. The spinodal minimum is situated at a slightly 
higher temperature than that of the cloud-point curve. Therefore, the fur- 
ther assumption of Halary et al. [2] that the difference in AT between the 
cloud-point curve and the spinodal is independent of the blend composition 
is incorrect. As their experiments do not allow verification of this assump- 
tion, there should be some doubt about this method of obtaining spinodal 
data. 

Figure 2 shows the minima of the cloud-point curves, the minima of the 
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z 

v99 + s20 

V633 + S106 

t 

\ 

\ 
W 

0 0.25 0.5 0.75 1 
mass fraction polystyrene - - 

FIG. 1. Examples for calculated cloud-point curves (-), shadow curves 
(---), and spinodals (- --). The arrows point to the critical concentration. 
The function 1 /o( T )  is used as a measure of temperature. 

shadow curves, and the critical points for a number of blends, keeping one 
component constant in each case. Figure 2(a) corresponds to Fig. 4 in Ref. 2 
(where the differences between these three curves are neglected). Figure 2 
indicates that t h s  neglect leads to a rather rough approximation. 

Furthermore, Fig. 2 exhibits an interesting feature: the three curves inter- 
sect at a special point. At this point, but only at this point, the minimum of 
the cloud-point curve, the minimum of the shadow curve, and the critical 
point coincide. The interpolated values of the mean MW at this intersection 
point areMw,ps = 69 300 for V99 + PS andMw,pvME = 113 400 for PVME 
+ S106. 

Figure 3 presents two diagrams showing l/$ps versus ( ~ w , p ~ / ~ w , p ~ ~ ~ ) 1 ’ 2  
for the minima of the cloud-point curves, the minima of the shadow curves, 
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PO LY (V I NY L METHYL ETHER )/POLYSTYRENE BLENDS 1065 

and the critical points. The same systems as in Fig. 2 were chosen, i.e., one 
mixing partner is kept constant in each case. Figure 3(a) is similar to Fig. 9 
in Ref. 2 where no distinction is made between the three curves. As the 
theoretical basis for the approximately linear dependence, Halary et al. 
quote the relation (written in our notation) 

where the segment numbers, rps and QVME, are replaced by the correspond- 
ing weight averages, IW,ps  and F w , p v ~ ~ ,  respectively. However, the experi- 
mental data usually do not correspond to this relation. Hence, Halary et al., 
following Nishi’s earlier work [24, 2.51, introduced a fitting factor a, 

which is significantly larger than unity in many cases (Table I11 in Ref. 2). 

ing to a X-value independent of composition) and neglecting polydispersity 
(rw = E). The values of Table 1 show the approximation c = d = 0 to be un- 
satisfactory. If, nevertheless, this approximation is made, Eq. (20) results in 

However, Eq. (24) results from Eq. (20) by applying c = d = 0 (correspond- 

1 1 2  kPS + 1 

‘w,Ps/’z,Ps1’2 - 
1/$ps  = 1 + - = 1 +  - (FW,PS ,;[ GZ 1 

rw,PVME/C,PVME’ l 2  r ~ ,  PVM E ~ P V M E  + 1 
~ P V M E  + 2 

(2 6) 

Hence, the polydispersity is not sufficiently accounted for by replacing 
the segment numbers in the formula for the monodisperse case, Eq. (24), by 
the corresponding weight averages. 

The most important point, however, is that, in discussing Eqs. (24) and 
(26), the critical points have to be used instead of the minimum data. Con- 
sidering the minima of the cloud-point curves, it can be seen from Fig. 3 
that the mean slope of the plot of l / $ p s  versus ( T , , ~ S / ’ ; ~ , P V M E ) ~ / ~  equals 
approximately 3.1 for systems V99 + polystyrene and approximately 2.7 
for systems poly(viny1 methyl ether) t S106. The slope reduces to 1.6 and 
2.2, respectively, if the critical data are considered. Therefore, the conclu- 
sions of Halary et al. [2] regarding a much too large effective segment length 
of poly(viny1 methyl ether) in these blends are not necessary. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
7
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



Y
 

I- - 43
3 

- 

42
3 

- 
41

3-
 

40
3-

 

39
3-

 

38
3-

 

37
3 

- I 
v9

9 
+ 
PS
 

0 
0.

2 
0.

4 
0.

6 
0.

8 
1 

m
as

s 
fr

ac
tio

n 
po

ly
st

yr
en

e 
-
 

41
 3 

40
3 

39
3 

38
3 

3 7
3 

PV
M

E 
+ 

S1
06

 
(b

) 

m
as

s 
f r

oc
 t io

n 
po

ly
st

yr
en

e 

-..
 
0
 

a,
 

a,
 

N
 

v
) 0
 
I
 

9
 

z 0
 

-n
 
9
 

J
J
 

-I
 
I
 

FI
G

. 2
. 

Pl
ot

 o
f 

te
m

pe
ra

tu
re

 v
s 

co
m

po
si

tio
n 

sh
ow

in
g 

th
e 

ex
pe

ri
m

en
ta

l m
in

im
a 

of
 t

he
 c

lo
ud

-p
oi

nt
 c

um
es

 (O
), 

th
e 

ca
lc

ul
at

ed
 m

in
im

a 
of

 t
he

 s
ha

do
w

 c
ur

ve
s 

(a
),

 a
nd

 th
e 

ca
lc

ul
at

ed
 c

ri
tic

al
 p

oi
nt

s 
(A

).
 

Li
ne

s 
ar

e 
ha

nd
 d

ra
w

n.
 

(a
) V

99
 + 

di
ff

er
en

t p
ol

ys
ty

re
ne

s.
 

(b
) 

D
if

fe
re

nt
 p

ol
y(

vi
ny

1 
m

et
hy

l e
th

er
)s

 + 
S 

10
6.

 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
7
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



/
 y+. 

4
-
 

3
- 

2
- 

1
- 

"
I

 0 
1 

i 
i 

1 
I 

PV
M

E 
+ 

S
10

6 

0
1

 
0 

0.
5 

1 .o
 

1.
5 

'w,
 

P 
S 

"w
 

. PV
M

 E 
1 "2

 

B r < I
 

z <
 

r
 

K m
 

-I
 
I
 

<
 

r
 

rn
 

-I
 
I
 

rn
 

z
 
I
 

\
 B I- < v

) -I
 <
 

P
 

m
 z m
 

W
 
r
 

rn
 z 0
 

v
, 

FI
G

. 3
. 

Pl
ot

 o
f 

th
e 

re
ci

pr
oc

al
 o

f 
th

e 
pc

ly
st

yr
en

e 
se

gm
en

t f
ra

ct
io

n,
 l

/$
ps

, 
vs

 th
e 

sq
ua

re
 r

oo
t 

of
 t

he
 q

uo
ti

en
t 

of
 t

he
 w

ei
gh

t-a
ve

ra
ge

 s
eg

m
en

t 
nu

m
be

rs
, (

 ~
,
,
~
S
/
~
~
,
P
V
M
E
)
~
'
~
,
 

sh
ow

in
g 

th
e 

ex
pe

ri
m

en
ta

l m
in

im
a 

of
 t

he
 c

lo
ud

- 
po

in
t 

cu
rv

es
 (O

), 
th

e 
ca

lc
ul

at
ed

 m
in

im
a 

of
 t

he
 s

ha
do

w
 c

ur
ve

s 
(a

),
 an

d 
th

e 
ca

lc
ul

at
ed

 c
ri

tic
al

 p
oi

nt
s 

(A
).

 
L

in
es

 
ar

e 
ha

nd
 d

ra
w

n.
 

(a
) V

99
 + 

di
ff

er
en

t 
po

ly
st

yr
en

es
, 

(b
) 

D
if

fe
re

nt
 p

ol
y(

vi
ny

1 
m

et
hy

l e
th

er
)s

 +
 S

10
6.

 
d
 
0
 

8 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
7
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



1068 RATZSCH, KEHLEN, AND WOHLFARTH 

All deviations from the simple Eq. (24) can be explained by the two main 
effects on the phase diagram in polymer blends: the free energy relation and 
the polydispersity described by the distribution function. Neither the applica- 
tion of a pparameter independent of the composition nor the neglect of the 
polydispersity (identification of the cloud-point curve minimum with the 
critical point and of with &,) are valid in the analysis of the considered 
blends. 

cal form. Because only one parameter can be fitted to the minimum of the 
cloud-point curves, we were forced to use a one-parameter GE model. Table 
1 shows the limitations of t h s  procedure. The one-parameter model leads to 
c values being unsatisfyingly large for some blends. We tried to improve this 
situation by adjusting the parameter d to a further point of the cloud-point 
curve taken from the corresponding figure [ 1,2] . The critical composition 
obtained in this way is practically unchanged and so are all qualitative discus- 
sions given above. A definite de endence of the parameter c on the mean MW 
is observed, which requires a G 
distribution function. Such an analysis needs more extended and complete 
experimental material. 

More information could be obtained if all data would be available in numeri- 

-2 function depending on the moments of the 

CONCLUSIONS 

To overcome the difficulties connected with the polydispersity of poly- 
mers, simplifying assumptions, similar to those in the papers by Halary et al., 
are often made in the literature on phase equilibria of polymers. The present 
paper shows that these simplifying assumptions are unnecessary. Continuous 
thermodynamics proves to be a convenient tool for evaluating the existing 
experimental data without simplifying assumptions and without large compu- 
tational efforts. 
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